

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

 AUGUST 2011
2. REPORT TYPE

Conference Paper – Post Print
3. DATES COVERED (From - To)

May 2010 – October 2010
4. TITLE AND SUBTITLE

A MULTI-STEP SIMULATION APPROACH TOWARD SECURE
FAULT TOLERANT SYSTEM EVALUATION

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Ruchika Mehresh, Shambhu Upadhyaya, and Kevin Kwiat

5d. PROJECT NUMBER
23G4

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/Information Directorate University at Buffalo
Rome Research Site/RIGD Dept of Computer Science and Engineering
525 Brooks Road Buffalo NY 14260
Rome NY 13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2011-4

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #: 88ABW-2010-3092.
Date Cleared: June 9, 2010.
13. SUPPLEMENTARY NOTES
© 2010 IEEE. Article appeared in the Proceedings of the 2010 29th IEEE International Symposium on Reliable Distributed Systems
(SRDS). This work is copyrighted. One or more of the authors is a U.S. Government employee working within the scope of their Government job; therefore, the
U.S. Government is joint owner of the work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
As new techniques of fault tolerance and security emerge, so does the need for suitable tools to evaluate them. This paper presents a
multi-step, simulation-based performance evaluation methodology for secure fault tolerant systems. A divide-and-conquer approach
is used to model the entire secure system in a way that allows the use of different analytical tools at different levels of granularity.
This evaluation procedure tries to strike a balance between the efficiency, effort, cost and accuracy of a system’s performance
analysis. This approach is demonstrated in a step-by-step manner by analyzing the performance of a secure and fault tolerant system
using a JAVA implementation in conjunction with the ARENA simulation.

15. SUBJECT TERMS
Architecture, Fault Tolerance, Modeling, Security, Simulation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

6

19a. NAME OF RESPONSIBLE PERSON
Kevin Kwiat

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Abstract- As new techniques of fault tolerance and security
emerge, so does the need for suitable tools to evaluate
them. Generally, the security of a system can be estimated
and verified via logical test cases, but the performance
overhead of security algorithms on a system needs to be
numerically analyzed. The diversity in security methods
and design of fault tolerant systems make it impossible for
researchers to come up with a standard, affordable and
openly available simulation tool, evaluation framework or
an experimental test-bed. Therefore, researchers choose
from a wide range of available modeling-based,
implementation-based or simulation-based approaches in
order to evaluate their designs. All of these approaches
have certain merits and several drawbacks. For instance,
development of a system prototype provides a more
accurate system analysis but unlike simulation, it is not
highly scalable. This paper presents a multi-step,
simulation-based performance evaluation methodology for
secure fault tolerant systems. We use a divide-and-conquer
approach to model the entire secure system in a way that
allows the use of different analytical tools at different
levels of granularity. This evaluation procedure tries to
strike a balance between the efficiency, effort, cost and
accuracy of a system’s performance analysis. We
demonstrate this approach in a step-by-step manner by
analyzing the performance of a secure and fault tolerant
system using a JAVA implementation in conjunction with
the ARENA simulation.

Index Terms— Architecture, Fault Tolerance, Modeling,
Security, Simulation

I. INTRODUCTION
The choice of the evaluation tool greatly affects the cost,

efficiency and effort required to analyze a new secure fault
tolerant design or idea. There are many tools available to the
research community for such analysis but mostly their
application areas are specialized. As a result, it is sometimes
very inefficient to evaluate a new idea using the available tools.
To modify an open source tool for the desired evaluation
requires a lot of effort. Researchers may also choose to develop
their own tools (theoretical models, simulations, etc.) but a
wrong approach can affect the cost of development and
accuracy of results adversely. For instance, in simulation the
validity of results cannot be established unless the system
model is thoroughly validated and verified.

1 Approved for Public Release; Distribution Unlimited: 88ABW-2010 3092,
dated 9 June 2010

There are generally three approaches to evaluate a system

design based on its current state of development. When the
system architecture is not established, researchers generally use
CTMC (Continuous time Markov chains) models to analyze
their systems. There have been several tools developed to solve
the CMTC models [1]. In the second approach, when system
design is available, simulation tools are used to model the
functional behavior of the system. The third approach is based
on conducting experimentation on a real-world system
prototype to test the availability, dependability and reliability
of the system. The drawback of relying completely on either
one of them is the increase in complexity or cost, or decrease in
the accuracy of results. If system implementation is chosen as
the evaluation tool then the results will be more accurate and
more representative of the real world conditions (like hardware
faults, network conditions, etc.) However, not only the
implementation is expensive to scale, but sometimes it may not
even be possible or affordable to develop. In such a case,
simulation may be preferred because it is easier to develop and
it can scale very rapidly at low cost. Simulation enables the
study of feasibility, behavior and performance without the need
of an actual system. It can also run at any speed compared to
the real world and thus can be used to test a wide range of
scenarios in lesser time than with a real system. However,
accuracy is a major issue with simulation models. Designing a
highly accurate and valid simulation model is not only difficult
but sometimes costly in terms of resource and time.
 We propose a multi-step approach that can be widely used
for evaluating secure fault tolerant systems. This approach
involves a combination of theoretical analysis, pilot system
implementation and simulation. This mix of analytical
techniques can be optimized to obtain an evaluation procedure
that minimizes its development effort and cost (resources and
time), and maximizes its accuracy and efficiency.

To demonstrate this approach, we have evaluated a secure
fault tolerant system that performs majority voting. The first
step of this demonstration is a pilot system implementation in
Java. The results obtained from this pilot implementation are
used to parameterize the second step of the demonstration,
which is a simplified system simulation.
 Section II discusses the rationale for our proposed approach
by surveying the various existing evaluation techniques.
Section III discusses the proposed multi-step approach in
detail. Section IV demonstrates the use of multi-step approach
for performance analysis and reports the results. The paper
concludes in Section V with a discussion on future work.

A Multi-Step Simulation Approach Toward Secure Fault Tolerant System
Evaluation1

Ruchika Mehresh and Shambhu J. Upadhyaya
Department of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, New York 14260

{rmehresh, shambhu}@ buffalo.edu

Kevin Kwiat
Air Force Research Laboratory

525 Brooks Road
Rome, New York 13441-4505

kwiatk@rl.af.mil

2010 29th IEEE International Symposium on Reliable Distributed Systems

1060-9857/10 $26.00 © 2010 IEEE

DOI 10.1109/SRDS.2010.53

363

2010 29th IEEE International Symposium on Reliable Distributed Systems

1060-9857/10 $26.00 © 2010 IEEE

DOI 10.1109/SRDS.2010.53

363

1

II. RATIONALE
Most of the feasibility, behavior and performance studies

conducted in the literature for fault tolerant systems use
theoretical analysis, actual system implementation, or the
available simulation tools. One of the earliest attempts to
develop fault tolerant systems, SIFT (Software implemented
Fault Tolerance) [2] is completely software-based and uses
loose synchronization of processors and memory. Since then,
many tools and frameworks, like Chameleon [3], Globus [4],
etc., have been proposed to develop and evaluate fault tolerant
systems. Apache Hadoop [5] is a Java software framework that
can be used to develop data-intensive, fault tolerant, distributed
applications.
 Many simulation tools and languages exist that can be used
for developing and analyzing fault tolerant system models.
CSIM [6] is a process-oriented, discrete-event simulation
language that enables quick construction of concise system
models. OMNeT++ [7] is a C++ simulation library and
framework. Mobius [8] is a software tool used for modeling the
behavior of complex systems. GridSim [9] is a grid simulation
toolkit for resource modeling and application scheduling for
parallel and distributed computing.

DEPEND [10] provides an integrated design and fault
injection environment for system level dependability analysis.
The fault injection can be defined as a stochastic process in
DEPEND so it emulates a real world scenario. However, it is a
specialized tool that concentrates majorly on fault injection and
dependability analysis.

Security of a system can be generally verified using threat
models and a series of logical test cases. However, the
application of a security algorithm to a system results in
performance overhead that must be within acceptable limits.

Simulation can only approximate the behavior of a real
system. In a real system, the components (memory, processor
speed, network bandwidth, etc.) have complex inputs,
interconnections and dependencies that are not always easy to
model. In addition to this, two similar components, such as two
processors, can have different behaviors even if they are
modeled as the same for the purpose of simulation. These
factors introduce disparity between the results obtained from
simulation and the results from experimentation. As discussed
above, we need to verify if the performance overhead of a
security application is within acceptable limits. For this
purpose, we need the simulation to perform as closely to a real
world system as possible. To reduce this disparity between the
simulation and experimentation results, there exist many
general-purpose simulation tools that allow the designing of
stochastic system models. Stochastic parameters/variables can
take into account a lot of unpredictable real-world factors.
However, this approach presents the challenge of specifying
the stochastic system parameters and variables, like probability
distributions, seeds, etc. Mostly, values for defining the system
parameters and variables are taken from prior projects,
sometimes without proper justification or verification, or are
simply assumed.
 The differences between simulation and experimentation
results can be ignored if only approximate comparisons are
required (like observing a linear or exponential relationship
between the input and output quantities). However, if the

objective is to obtain the results as close to the experimentation
results as possible (as required in our system because there may
not be any existing results to compare), then we need to
realistically parameterize our simulation model.

Mostly researchers validate their simulation design by
comparing the simulation results (for lower scale values) with
the results obtained from the system implementation. In many
cases, the actual system may not exist and hence it is not
possible to validate a simulation model. Hence, the need is to
simplify the simulation model, so it can be easily verified for
the logic. Adding excessive details to a model makes it more
complex to understand and is prone to design errors. For
instance, in designing a network application, an attempt to
design the various time-variant factors that affect network
performance will not only be impossible to precisely model,
but will also increase the probability of design errors. So
simulation designers generally make simplifying assumptions
like the availability of a 100Mbps network bandwidth at all
times. However, the application rarely gets to use the entire
bandwidth. So the execution time obtained from a simulation
for a network application will be much more optimistic than in
a real world implementation. Designers generally go to a
specific level of granularity in simulation designing and then
start making assumptions beyond that level. Our proposed
approach tries to realistically estimate these “assumed” values.
This will provide more statistically accurate results along with
a much simpler simulation model that will be less prone to
design errors.

Another reason for proposing this multi-step approach is to
deal with long or unbounded execution times for system
implementations. Sometimes there is a system prototype
available but the runtime is directly proportional to some
parameter/variable, for instance, the workload size. In this
scenario, if we need to run large workloads and one application
run takes days, it becomes very inefficient to experiment with a
large number of design alternatives. So, a system simulation
for this problem will be a better solution. However, designing a
realistic enough simulation is again the challenge here.

III. THE MULTI-STEP APPROACH
The proposed approach is a combination of three concepts:

Modular decomposition, modular composability and
parameterization [11]. Modular decomposition consists of
breaking down a problem into smaller elements. Modular
composition involves production of elements that can be freely
combined with each other to provide new functionality.
Parameterization is the process of defining the necessary
parameters for the problem.

The multi-step approach consists of a modular functional
model of the system. This model is hierarchical in terms of the
level of detail/granularity. We start with the most abstract form
of the model and work downwards toward a more detailed
level/finer granularity. If a module can be further decomposed
into sub-modules that satisfy the composability property, we
move down further into the hierarchy. On reaching the level of
maximum decomposition where the complexity of the module
is very high, we replace it with a black-box instead of
analyzing it further for decomposition. This black-boxed level
of detail is complex to model for simulation purposes but it is

364364

2

Highest level of detail – Easy to implemen
(Lowest level of abstraction)

Highest level of Abstraction – Easy to mode

Development of S

Development of ex
prototype/ theoreti

System simulation model using Multi-
step approach

simple to be described using stochastic va
bandwidth, etc.) that are statistically derived
experimentations. It can also be defined
analysis, like the use of queuing theory in case

The concept used by this approach is th
model develops down the levels of granularity
and the development of system prototype/th
goes up the levels of granularity. They me
where the accuracy, simplicity and efficiency
can be maximized. Refer to Fig 1. Since the up
model design are simple, they are less prone to

Figure 1: Development process of simulation model usin

IV. DEMONSTRATION
To demonstrate the multi-step approach,

simple system that executes applications in
tolerant environment. Execution of the wo
secure and fault tolerant by running its pa
replicas) on several systems in lockstep. A
checkpoints are taken at constant intervals a
initiated in case of a failure/security threat.
results from all the replicas are compared
outcome. For the purpose of this demonstrati
how to model this system using the multi-st
measure the effect of failures/security b
execution time of the workload. The assumpt
is that all the security breaches will caus
inconsistency in the checkpoint. A fai
distinguished from a security breach excep
security threat is assumed to be permanent, w
be either transient or permanent.

Such systems are generally used as a bas
mission-assurance applications. These applica
hours or days. Therefore, a large number of
systems for experimentation purposes is no
Thus arises the need for a simulation an
approach.

A. System Architecture
As shown in Fig. 2, the system’s backbo

coordinator and three replicas. Coordinator
components: a heartbeat manager, a checkpoi
majority voter. The workload is fed to the c

nt

el

Simulation model

xperimental
ical analysis

alues (fault rate,
d from real world
d via theoretical
e of scheduling.

hat the simulation
y (becomes finer)

heoretical analysis
eet in the middle
y of this approach
pper levels of this
o design errors.

ng multi-step approach

, we focus on a
n a secure, fault
orkload is made
arallel copies (or
Application level
and a recovery is
. In the end, the

to get the final
ion, we will show
tep approach and
breaches on the
tion in this model
se some kind of
ilure cannot be

pt that a constant
while failures can

sis for developing
ations can run for
f re-runs for such
ot very efficient.

nd the multi-step

one consists of a
has three major

int manager and a
coordinator and it

then becomes the coordinator’s job t
a fault tolerant and secure environm
valid result. To accomplish this, coo
copies (replicas) of this workload an
the available servers over the netw
these replicas in lockstep by coo
checkpointing. All the replicas send
coordinator, which are handled b
When heartbeat manager does not r
replica over a specified amount of
replica has become unavailable and
considers it as a part of the ongoing

Figure 2: System Arc

Checkpoints are the snapshots o

execution. The replicas are marked
the checkpoints are taken and
coordinator. Coordinator then comp
checkpoints obtained from these rep
application state is consistent for a
security breach at any of the rep
checkpoints is inconsistent with
signals for a rollback recovery a
consistent checkpoint to all the repl
confirmation to proceed. All the re
they get the positive confirmation fr
all replicas follow a stop-and-go pro

In case of a rollback, replicas res
the last consistent checkpoint sent t
This way, all the replicas are again i
and the lockstep execution is a
fault/security breach is permanent (o
the checkpoint from a system is
other checkpoints, the rollbacks (an
on infinitely. Therefore, a threshold
of rollbacks that can be initiated d
After a replica crosses this threshold
a part of the future decision maki
have calculated the final results
coordinator for majority voting. Co
final result to the user.

to execute this workload in
ment to return a final and
ordinator generates several
nd distributes them among

work. The servers execute
ordinating via centralized
d periodic heartbeats to the
y the heartbeat manager.
receive a heartbeat from a

f time, it assumes that the
d the coordinator no more
execution.

chitecture

of the status of workload
d at specific points where
sent periodically to the
pares the application-level
plicas to make sure that the
ll of them and there is no
licas. If even one of the
the rest, the coordinator

and sends the last stored
licas. Otherwise, it sends a
eplicas stop and wait until
from the coordinator. Thus,
otocol [12].
et their respective states to
o them by the coordinator.
in the same consistent state
achieved. However, if a
or occurring too often) and
never consistent with the
nd thus execution) can go
is specified on the number

due to a particular replica.
d, it is no more considered
ng. When all the replicas
s, they are sent to the
ordinator then delivers the

365365

3

B. Modeling the System using the Multi-step Approach
As discussed above, this system needs to resort to simulation

so that the experimentation can be completed relatively faster
than the real world time.

At an abstract level the system is simple, but as the
granularity becomes finer, a lot of complexities arise. We
construct the system model piece-by-piece and where it gets
complicated or unpredictable, we black-box that level of detail
to save the effort in designing it. This black-box will be
parameterized using the experimentation with the system
prototype. Note that we do not have to develop/built the entire
system for these parameters/values.

We chose Java for this implementation because of its easy-
to-use API for programming socket communication and our
level of familiarity with it. For simulation purposes, we chose
to use discrete event simulation. Discrete event simulation is
generally of three types—event-oriented, activity-oriented and
process-oriented. We could choose any of these to model and
simulate our system. However, the system architecture is such
that process-oriented approach would be the most convenient
and accurate one. Workload can be defined as an entity with
attributes like size, arrival time, checkpoint rate, etc. The
various stages of processing like network, replica execution,
heartbeat management, etc. are modeled as separate processes.
We have a variety of tools like CSIM, JavaSim, and ARENA
that we could use to design this simulation. However, we chose
Arena for this demonstration since it has a user friendly drag-
and-drop interface for developing the simulation model [13].

At the highest level of abstraction, the three main modules
that we need to consider are: Network, Coordinator and
Replica. Refer to Fig. 3. Now we go through each module to
see if it can be further decomposed into sub-modules. To verify
that a new level of hierarchy can be defined, we need to
investigate the potential sub-modules for the following two
properties:

i) Composability: The functionalities of the potential sub-
modules can be composed to provide the functionalities of their
parent module.

ii) Sufficiency: The functionalities of the potential sub-modules
collectively describe the entire set of functionalities of their
parent module.

The first module ‘Coordinator’ has three sub-modules by
design. These three sub-modules collectively describe the
entire set of functionalities provided by the coordinator.
Therefore, these three sub-modules are composedly sufficient
to describe the coordinator. Hence, we move down one level
of the hierarchy for the coordinator module.

The second module represents network that is unpredictable
and is complicated to decompose further. Moreover, though
we have a fixed network communication protocol but a real
system cannot always strictly follow the protocol. For
instance, a replica may skip sending a few heartbeats/
checkpoint due to a busy processor. So network can be
modeled as a black-box, parameterized using the data
collected from the experiments on the system prototype
(implemented in Java).

Figure 3: System model hierarchy of height 4 using the multi-step approach

Similarly, going down the levels of hierarchy, we get a tree

of height 4 with the lowest level that cannot be further
decomposed.

C. Parameterization
The data recorded from the several runs of experiments can

be converted into probability distributions with the help of data
analysis tools such as Minitab, Arena Input Analyzer, etc.
These distributions can then parameterize the lowest level of
our simulation model. We have used Arena [13] input analyzer
for data analysis and Arena student version for simulation of
this system. Arena input analyzer fits the best possible
probability distribution to the data. Various tests (like Chi-
square test) can be conducted using these tools to find out how
well the selected distribution fits the data.

D. Results
Using this simulation we experimented with the workload

size to determine its effect on the execution runtime in the
presence of faults. As shown in Fig. 4, the runtime grows
linearly with the increasing workload size in the presence of
the fault percentage as shown in Table 1.

TABLE 1: DIFFERENT FAULT LEVELS FOR ANALYSIS IN FIGURE 4

 Replica 1 Replica 2 Replica 3

Time 0% 0% 0%
Time 1 10% 0% 0%
Time 2 25% 10% 10%

Figure 4: Simulation runtime (ms) Vs Workload size (MB)

We also experimented with a workload of fixed size (1,000
MB) with no threshold on the number of rollbacks that can be

System
Model

Coordinator

Heartbeat
Manager

Checkpt.
Manager

Fault
Rate

Fault
freedom

Majority
Voter

of
Permanent

Faults

Network Replica

Heartbeat
Sender

App.
Exec.

Take/Send
Checkpoint

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25

Time

Time1

Time 2

366366

4

initiated per replica. When the fault rate in just one of the
replicas is increased, the runtime increases exponentially.

Figure 5: Simulation runtime (ms) Vs Fault rate for a fixed workload

As can be seen from Fig. 5, runtime explodes if the fault rate
is very high in one of the replicas. For this purpose, designers
cap the fault rate by ousting any replica that has more than a
specified fault rate.

Multi-step approach also provides researchers with the
independence to decide their desired level of simplicity versus
accuracy. For instance, in our sample system, we could have
defined all the modules at the first level of hierarchy as black-
boxes. This would have simplified our simulation a lot, but it
would not be as accurate.

V. CONCLUSION
In this work, we proposed an approach to reduce the effort

and cost required to analyze a secure fault tolerant system and
increase the accuracy of analysis. This approach aims at
finding a balance between the theoretical analysis,
implementation and simulation approaches to solve the
problem of analyzing a system. It also enables researchers to
develop their own project-specific analysis with higher
confidence in its validity. We demonstrated the analysis of a
secure, fault tolerant, centralized, replicated system using the
proposed multi-step approach. This system was analyzed by
using implementation in conjunction with simulation to
evaluate the effect of faults on the execution time of the
workload.

In the future, we intend to aid the development of problem-
specific simulation tools by providing a simulation framework
based on the multi-step approach. This simulation framework
will assist the designers to develop the models using multi-step
approach and give them the independence to choose the desired
level of accuracy and efficiency. We will also apply this
approach to evaluate a new secure proactive recovery paradigm
that we are currently working on to address the survivability of
mission-critical applications. Another plan is to investigate the
applicability of this approach to other fields of research, such
as wireless networks, cloud computing and evaluate their
related security issues.

VI. ACKNOWLEDGEMENT
This work was supported in part by U.S. Air Force Research

Laboratory Grant No. 200821J.

REFERENCES
[1] R. Geist and K. Trivedi, “Reliability Estimation of Fault-Tolerant

Systems: Tools and Techniques”, Computer, vol. 23, no. 7, pp. 52-61,
July 1990

[2] J.H. Wensley, “SIFT Software Implemented Fault Tolerance”, Proc.
Fall Joint Computer Conf., AFIPS, vol. 41, pp. 243-253, 1972

[3] Zbigniew Kalbarczyk, Ravishankar K. Iyer, Saurabh Bagchi, Keith
Whisnant, “Chameleon: A Software Infrastructure for Adaptive Fault
Tolerance”, IEEE Transactions on Parallel and Distributed Systems Vol.
10, NO. 6, p.560-579, JUNE 1999

[4] http://www.globus.org/
[5] http://hadoop.apache.org/
[6] Herb Schwetman, “CSIM: a C-based process-oriented simulation

language”, Proceedings of the 18th conference on Winter simulation,
p.387-396, December 08-10, 1986, Washington, D.C., United States

[7] http://www.omnetpp.org/
[8] http://www.mobius.illinois.edu/
[9] http://www.gridbus.org/gridsim/
[10] Kumar K. Goswami , Ravishankar K. Iyer , Luke Young, “DEPEND: A

Simulation-Based Environment for System Level Dependability
Analysis”, IEEE Transactions on Computers, v.46 n.1, p.60-74, January
1997

[11] B. Meyer, Object-Oriented Software Construction, Prentice Hall, 1988
[12] E. N. (Mootaz) Elnozahy , Lorenzo Alvisi , Yi-Min Wang , David B.

Johnson, “A survey of rollback-recovery protocols in message-passing
systems”, ACM Computing Surveys (CSUR), v.34 n.3, p.375-408,
September 2002

[13] http://www.arenasimulation.com/

0

500

1000

1500

0 20 40 60 80 100

Time

367367

5

